
Extended Character Segmentation Approach for
Compressed Machine-Typed Documents

Vladan Vučković, Boban Arizanović, and Simon Le Blond

Abstract - This paper presents an analysis of threshold
parameters used in a new character segmentation approach for
machine-typed documents, together with efficient new image
compression and decompression methods used in the real time
OCR system. Provided results show that the character
segmentation technique is robust to machine-typed documents
from different typewriters, giving far superior results than state-
of-the-art approaches.

Keywords - Image processing, OCR, Character segmentation,
Machine-typed documents, Image compression.

I. INTRODUCTION

Character segmentation is a very important pre-
processing stage in Optical Character Recognition (OCR)
systems [1,2], and together with character recognition [3,4]
has been an important subject of research for many years
[5]. It should be emphasized that the difficulty of character
segmentation is usually underestimated compared to the
process of character recognition [6,7]. Previous work that
deals with character segmentation in document images can
be divided into machine-printed documents [6,8,9], where
the document structure and the shape of its elements is
regular, and handwritten documents where character
segmentation is challenged due to irregular document
structure [4,7,10]. Old machine-typed documents are of
particular significance because important historical
documents are often in this form [4,11,12].

Recent research of character segmentation includes all
levels of this process. Analyses on image binarization
parameters, used in document image pre-processing,
showed that the Otsu method and other Otsu-based
methods give the best results on average [12]. As a pre-
processing stage of the character segmentation system,
image compression and decompression are required to
efficiently store the document images. Genetic algorithm
based on discrete wavelet transformation information for
fractal image compression was presented in [13]. A lossy
image compression technique which uses singular value
decomposition (SVD) and wavelet difference reduction
(WDR) was proposed in [14]. Many methods for character
segmentation have been proposed. A technique based on
searching for connected regions in the spatial domain
performed on a binary image was proposed in [15].
Another process uses the Bayes theorem for segmentation
by exploiting prior knowledge, and is adapted for real time
tasks [16]. Diverse methods for segmentation of
handwritten documents are proposed. One technique
exploits clustering in the process of segmentation [17]. To

solve the problem of touching characters in handwritten
documents, self-organizing maps, SVM classifiers, and
Multi-Layer Perceptron are used [10,18].

This paper presents further improvements and analyses
of the author’s character segmentation approach, which
forms part of a real time OCR system for the needs of the
“Nikola Tesla Museum” in Belgrade [19-22]. The first
contribution presented in this paper is evaluating pre-
processing methods for document image compression and
decompression, which take place after the image
binarization, while the second contribution is a detailed
analysis of the threshold parameters used in the character
segmentation system. The results show that proposed
image compression and decompression methods are better
than JPEG and JPEG2000 image compression standards,
giving up to 4-fold improved compression ratio. Results
also show that the extended character segmentation
presented is robust to variation in the typewriter,
outperforming other methods in this respect also.

This paper is organized as follows: Section II offers the
complete description of the proposed image compression
and decompression methods, as well as analysis of
threshold parameters. In Section III, a set of experimental
results for image compression methods and segmentation
accuracy are provided. Finally, discussion of the extended
real time character segmentation method, results, and
future work is given in Section IV.

II. Extended character segmentation approach

This section proposes new image compression and
decompression methods used in the pre-processing stage of
the character segmentation system and provides detailed
analyses of threshold parameters used in the segmentation
stage to control the segmentation process.

A. Image compression and decompression

Image compression/decompression allows decoupling
of the character segmentation system into two independent
stages. The first is a pre-processing stage with the
document image compression and decompression as a final
process, and the second is the document image
segmentation. The most evident gain here is the ability to
execute two independent system parts at different times. In
this way, the document image compression and document
image segmentation can be executed on different machines.
Also, the previously compressed/decompressed document

Vladan Vučković and Boban Arizanović are with the Faculty
of Electronic Engineering, University of Nis, Aleksandra
Medvedeva 14, 18000 Nis, Serbia, E-mails:
vladanvuckovic24gmail.com, bobanarizanovichotmail.com.

Simon Le Blond is with University of Bath, Department of
Electronic & Electrical Engineering, Bath, United Kingdom, E-
mail: S.P.leBlond@bath.ac.uk.

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

42

images can be processed using different versions of the
segmentation engine. This is very important since it allows
efficient testing of the segmentation engine. Finally, image
compression allows efficient storing of document images
which can save significant memory space.

A.I Image compression and decompression using RLE

The first proposed image compression and
decompression methods employ the RLE algorithm for
data compression. This approach is general and can be used
for all types of binarized images, but RLE algorithm gives
better compression results in the case of document images
than other classes e.g. natural images. Illustration of the
RLE algorithm including the coding format is given in Fig.
1.

Fig. 1. Document image compression using RLE algorithm: (a)
Compression format for white pixel runs, (b) Compression format

for black pixel runs, (c) Example of pixel scanline, (d)
Compressed pixel scanline

The RLE algorithm counts white and black pixels and
stores the information about pixel runs in a compressed
file. Storing is achieved using 3 bytes for all information
about the white pixels and 2 bytes for information about the
black pixels. In both cases the pixels are counted until the
maximal value is reached. Since 2 bytes are used for white
pixels (WHITE_RUN), this value is 216 = 65536, while in
case of black pixels (BLACK_RUN) this value is 28 = 256.
When these values are reached, the WHITE_LOOPS or
BLACK_LOOPS byte is incremented and WHITE_RUN
and BLACK_RUN values are set to 0. The whole process
of counting is then repeated. Since white pixels are a part
of the background and dominate in document images, it is
expected that 1 byte is not enough for storing the
information about the number of consecutive white pixels.
On the other hand, black pixel runs are expected to be short
since they represent document characters and some spaces
between characters are expected, thus only 1 byte is used
for storing this information. Document image
decompression is straightforward. The first byte is always
multiplied by 256 for black pixels or 65536 for white
pixels. This value is then incremented by the value of the
next byte or 2 bytes. The obtained value represents the
number of consecutive pixels of the same color in the

current run of pixels. This process is repeated until the end
of the compressed file.
A.II Image compression and decompression using
document character contour extraction and scanline fill
algorithm

The second proposed method employs the combination
of the algorithm based on document character contour
extraction and the scanline fill algorithm. The document
image is processed in the horizontal and vertical direction
and distances between the black pixels which represent
starting and ending pixels of the black runs are stored in the
compressed file. For this purpose, 2 bytes can be used to
store the distance between two black pixels. It should be
mentioned that in both compression methods the number of
bytes used for storing the information about the white and
black pixel runs is dependent primarily on the image
dimensions. Small images are expected to have short runs,
while large images are expected to have long runs of pixels
of the same color. Therefore, 1 byte can be used for both
white and black pixels in the case of small images, while in
case of large images 2 bytes are necessary. Another
important factor is a structure of a document image. If
textual content dominates in a document image,
background areas are less significant and thus even with
large images, 1 byte can be used for storing the information
about pixel runs. On the other side, if the background area
dominates, even with medium images, 2 bytes are not
enough to store the information about pixel runs.

After obtaining the offsets of black pixels which
represent the contours of the characters, in the first step of
the decompression method contours are drawn to the output
image. The second step uses the iterative scanline fill
algorithm. The main idea here is to scan the whole output
image and fill the contours which represent the background
with background color, while character contours will be
filled with black color. This is achieved by repeating
execution of the scanline fill algorithm. The background
color of a document image is then replaced with white
color and the original binarized document image is
obtained.

B. Analyses of threshold parameters

This subsection provides detailed analyses of threshold
parameters used in the character segmentation system.
Analyses of document image binarization and line, word,
and character segmentation are taken into consideration.

B.I Binarization

The binary image is obtained using a thresholding
function T which is a gray-level transformation function of
the form:

00000000 0000000000000001 00000000 00000101 00000000
0000000000000100 00000000 00000011

a)

b)

c)

d)

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

43

In the concrete case, value rmax is equal to 255. The
threshold value Thb that gives the best results is influenced
primarily by the quality of the document image. If the
document image is of low quality, a higher threshold value
is required. Experimental results showed that in case of
machine-typed documents the best results are achieved
when Thb takes values in the range 160-190. This threshold
parameter affects line and word segmentation in some
aspects, but character segmentation the most, since the
spaces between the characters are small and the modified
projection profiles technique can fail to separate the words
into characters properly. In the case of images of high
quality, Thb can take values closer to 160, while in case of
images of low quality this value must be closer to 190. The
graphs which show a dependency of segmentation accuracy
from the binarization threshold parameter Thb are shown in
Fig. 2.

Fig. 2. Dependency of the segmentation accuracy from the
binarization threshold parameter

The character segmentation system is intended for
processing of document classes which contain documents
typed on the same typewriter. Although it does not
guarantee that documents which belong to the same class
will be of the same quality, this is nevertheless likely. This
means that a constant value for binarization threshold
parameter can be used for different documents classes.

B.II Segmentation logic

Segmentation logic is based on a modified projection
profiles technique, which uses histogram processing. A
sliding window is used for calculation of the concentration
of black pixels in the area of interest. Document line
segmentation exploits the sliding window based method
with vertical sliding. Suppose that the sliding window is
size of N x H, where N is the width of the binary image f
and H is the height of the sliding window. The
concentration of black pixels in the sliding window is
calculated as:

Values sn represent the values in the array of all sliding
window concentrations of black pixels, S. The next

condition is used for making a decision about which offsets
will be taken as potential delimiters between lines:

where dx represents the offset relative to the top of the
image and H/2 represents integer division. Values dx
represent offsets of the middle lines of the windows which
slide vertically along the area of interest. Only the offsets
which belong to the sliding window with the concentration
of black pixels lower than the chosen threshold value are
considered. Using the offset analysis and considering the
fact that the document line height is greater than d pixels,
the closest offsets on distance greater than d are taken.
Value H is the height of the sliding window which slides
from top to bottom of the image. In general, the goal is to
find local minima which represent spaces between the
document lines. If value greater than 1 is chosen, it will
lead to worse results, since multiple pixel scanlines are
considered. In that case, the bigger value for threshold
parameter Thswl is necessary due to higher average
concentration of black pixels in the sliding window. This
would lead to unpredictable behavior and would be
impossible to separate document lines that are very close to
each other. Therefore, the sliding window height equal to 1
is the best choice and makes the process of document line
segmentation easier to control. The value of the threshold
parameter Thswl depends on the document image structure
and document image quality. The best choice is the
smallest possible value which will separate correctly and
completely the document image in lines. Even if this is
achieved, it is possible and expected that other separators
which cut the document lines will be found, too. For this
reason, the previously mentioned value d is used to
eliminate the wrong separators. This value is constant for
documents inside the same document class and
approximately equal to the document image character
height.

The word segmentation process uses the sliding
window based method with horizontal sliding. Suppose that
a sliding window size of W x H is taken, where W is the
width of the sliding window and H = Lcl – Lcu represents
the height of the current line. The concentration of black
pixels in the sliding window is calculated as:

where Lcl is the offset of the lower border and Lcu is the
offset of the upper border of the given document line. The
histogram is computed for each document line using the
values hn. The essence of the histogram analysis is in
determination of the histogram valleys which represent the
minima of the concentration of black pixels in the given
line. The local minima less than the chosen threshold value
are taken and these values represent delimiters between the
words. Taking the word segmentation into consideration,

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

44

the sliding window width W and the threshold value Thsww
should be analyzed. Since the sliding window height is
fixed and determined by the previously obtained document
line height, the sliding window width controls the width of
the spaces that are searched inside the document line. The
value used for sliding window width ideally should be
around the average width of spaces between the words. An
alternative solution is to choose the value higher than
average space between the characters inside the word. This
will raise the possibility that only the spaces between the
words are detected. This value also depends on document
image structure, quality, and dimensions. The threshold
parameter Thsww has a role to eliminate the potentially
wrongly detected spaces between the characters. Choosing
the low value for Thsww will ensure only the spaces between
the words are detected, thus the latter choice is more
suitable. The graph in Fig. 3 shows the dependency of the
word segmentation accuracy from the sliding window
width.

Fig. 3. Dependency of the word segmentation accuracy from the
sliding window width

The approach used for character segmentation consists
of the word alignment process, the already described
histogram based method, and decision-making logic. The
word alignment process represents the correction of
dislocated words that appear due to the use of old typing
machines. Sliding window height is again equal to the
previously obtained document line height, while sliding
window width depends on various factors. In case that a
document image is of good quality, it is possible to perform
quality image filtering and remove undesirable noise. But,
in case of document images of low quality, even the best
possible choice of the value for the binarization threshold
parameter would not be helpful. The reason for this lies in
sensitivity of the projection profiles technique used in the
first part of the character segmentation process. Document
images of low quality will have missing pixels in some part
of the word and this area will be detected as a space
between the characters. Also, the additional pixels in the
areas which represent spaces between the characters will
prevent the algorithm to detect them as spaces. A sliding
window of generally smaller width than that used for word
segmentation should be chosen for the first part of
character segmentation. The value for sliding window
width should approximately correspond to the average
space between the characters. It depends primarily on
document image dimensions. The threshold value Thswc

used to choose the potential delimiters within a word
should be low enough to avoid detecting the wrong
delimiters, and is strongly dependent on document image
structure, quality, and dimensions.

The second part of the character segmentation is more
specific and represents a decision-making logic. After
determination of the local minima, which represent
potential delimiters between characters, the threshold value
for document character width Thcw is used for determining
the word length. The average character width is calculated
as follows:

where Cn is the assumed number of characters in a word
calculated using the threshold value Thcw, Ww is the width
of the given word in pixels, and Cwavg represents the
average character width used in further processing. The
word length is used to determine the number of delimiters
in a word. Afterwards, the average character width can be
calculated using the assumed word length, which is
calculated using the threshold value Thcw. The threshold
value Thcw is dependent on document image dimensions.
This value ideally should be equal to the average character
width, but even the slightly lower or higher value would be
suitable. This deviation also depends on document image
dimensions. The larger document images allow the bigger
deviation and smaller document images allow smaller
deviation values.

The segmentation of the given word starts from the left
border, and delimiters at distance equal to the determined
average character width are taken as the referent delimiters.
The crucial part in character segmentation is the choice of
the correct delimiter from the potential delimiters. The
algorithm goal is to find the potential delimiter that is
closest to the referent delimiter, where the maximal
distance between the referent and potential delimiter is
defined by the maximal offset allowed. In the case where
there are no potential delimiters within the allowed
distance, the referent delimiter will be chosen to be the real
delimiter and the next referent delimiter will be set on a
distance equal to the average character width from the
chosen delimiter. Suppose that d1, d2,…,dn is the sequence
of potential delimiter offsets, where each of them is
calculated as:

where hv represents the given histogram valley and W is
the width of the sliding window. The offset of the chosen
delimiter is determined as follows:

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

45

where j is the index of the chosen delimiter in the set of all
potential delimiters, dref is the referent delimiter, and Thoffset
is the threshold value for the maximal allowed distance
between the closest potential delimiter and the referent
delimiter. The threshold value Thoffset also primarily
depends on document image dimensions. This value
represents a deviation from the assumed delimiter position
dref. In any case, this deviation is smaller than determined
average character width Cwavg.

IV. Experiments

The proposed image compression and decompression
methods, as a part of a character segmentation system, are
tested on several PC machines. These methods are
evaluated from the perspective of the image compression
ratio and time complexity, to the perspective of the
segmentation accuracy when specific compression methods
are used. The second batch of experiments show the

adaptability of the character segmentation approach for
different classes of machine-typed documents. Documents
typed on different typewriters require different threshold
values, and by choosing the correct values for the
thresholds, it is possible to achieve the high segmentation
accuracy for all classes of documents. In order to obtain
comparative results, JPEG and JPEG2000 image
compression standards are used. Image compression using
JPEG and JPEG2000 is performed using low, medium, and
high quality compression, including lossless compression
in the case of JPEG2000 compression.

The most important metric for evaluating the
compression methods is compression ratio. Since the
proposed image compression and decompression methods
will be used in character segmentation system, their
performances specifically on document images should be
analyzed. To perform this analysis, image compression
methods are tested using two document images. These
document images are machine-printed documents since the
second method is limited to machine-printed documents
which have regular structure, thus character contour
extraction is easier. Compression ratio results for these
document images and different image compression
methods are shown in Table I.

TABLE I

COMPARISON OF THE IMAGE COMPRESSION RATIO FOR MACHINE-PRINTED DOCUMENT IMAGES FOR DIFFERENT IMAGE COMPRESSION METHODS

Image
Dimensions

Image
File
Size
(KB)

Compression Ratio

JPEG JPEG2000
RLE Contour

Extraction/Scanline Fill
Low Medium High Low Medium High Lossless

719x328 692 19.771 15.727 9.479 24.714 16.878 11.533 14.417 67.184 46.443

1266x924 3429 14.169 9.605 5.164 36.095 13.138 6.671 9.741 27.878 19.373

The proposed methods perform very well on document
images based on results from Table I. This conclusion is
expected since the presented algorithms perform better
when the image contains huge areas of the same color, as in
the case of document images. The RLE based method gives
the best results, while the contour extraction method gives

the second best results on average. To justify the usage of
the second image compression method, the segmentation
results for document images previously compressed and
decompressed using different methods are given in Table
II.

TABLE II

COMPARISON OF THE SEGMENTATION ACCURACY RESULTS FOR DIFFERENT IMAGE COMPRESSION METHODS USED IN THE PRE-PROCESSING
STAGE

Segmentation Accuracy (%)

JPEG JPEG2000 RLE Contour Extraction/Scanline Fill

Line Segmentation 81.54 81.54 81.54 80.32

Word Segmentation 78.28 78.28 78.28 78.14

Character Segmentation 87.08 87.08 87.08 86.92

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

46

The medium or high quality JPEG and JPEG2000
compression is shown since it behaves the same way as
lossless compression after the additional binarization.
Therefore, the results for JPEG, JPEG2000, and RLE based
compression are identical. The most important conclusion
here is that contour extraction based compression in
combination with scanline fill decompression gives slightly
worse results than previous compression methods. The
reason for this lies in sensitivity of the evaluation metrics
and also in the specificity of the character segmentation
technique. In general, this technique is not sensitive to

small changes in document image structure and therefore
the segmentation accuracy results are similar to those
obtained using the lossless compression methods.

Finally, a very important aspect of the image
compression methods is time complexity since they are
intended for a real time character segmentation system. In
order to provide reliable results, the proposed image
compression and decompression methods are tested on
several PC machines and results are shown in Tables IV
and V.

TABLE IV

PROCESSING TIME FOR RLE BASED COMPRESSION AND DECOMPRESSION METHOD (AMD ATHLON™ X4 840 QUAD CORE PROCESSOR 3.1
GHZ)

Image dimensions
(pixels)

White Pixels/Black
Pixels (%)

Processing Time (ms)

RLE Compression RLE Decompression

719x328 93.09:6.91 0.26639 0.30149 0.23231 0.27278

1266x924 83.51:16.49 2.04907 2.59600 1.94450 3.05122

2632x3575 98.06:1.94 10.61898 15.07239 13.35769 21.82402

2640x3612 98.69:1.31 10.79404 16.99354 13.31302 21.95595

TABLE V

PROCESSING TIME FOR CONTOUR EXTRACTION BASED COMPRESSION METHOD AND SCANLINE FILL DECOMPRESSION METHOD (DOCUMENT
IMAGE SIZE OF 719X328)

PC Machine Specification
Processing Time (ms)

Contour Compression Scanline Fill Decompression

AMD Athlon™ X4 840 Quad
Core Processor 3.1 GHz 0.26672 0.29824 1.59406 2.06575

Intel® Core™ i3-4150 CPU @
3.50GHz 0.50409 0.52009 1.16008 1.18575

Intel® Core™ i5-750 CPU @
2.67GHz 1.05348 1.06509 1.94235 1.95962

Time complexity results are obtained after 10000
executions of algorithms implementations. The first
method also achieves excellent results in the case of
document images with more black pixels which is a
characteristic of documents with greater textual content.
The second method processing time is primarily affected
by the number of closed contours which represent character
borders and must be filled using the scanline fill algorithm.
Each time the closed contour must be filled, the scanline
fill algorithm for region filling must be executed. Since the
document image used for obtaining the results in Table V
has huge areas of the same color and a small number of
characters, the second method proved to be very efficient.

The second part of the experimental section is focused

on the adaptability of the character segmentation system. In
order to evidence this property, documents are divided into
12 classes, where each class represents a set of documents
typed on the same typewriter. Therefore, 12 combinations
of threshold values that give the best results for
corresponding classes are chosen, and segmentation
accuracy results when these combinations are used for
processing are provided. The results for all levels of
segmentation are shown in Table VI. Results rarely go
below 80%. Text line segmentation results are above 90%
in cases when spaces between document lines are bigger
and when it is easy to determine the position of the lines. It
is expected that text line segmentation results are good for
all document classes, where spaces between lines are clear,

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

47

otherwise threshold values should be chosen carefully.
Another important feature are threshold values for word

segmentation and the determination of the average
character width.

TABLE VI

SEGMENTATION RESULTS FOR CHARACTER SEGMENTATION APPROACH FOR DIFFERENT CLASSES OF MACHINE-TYPED DOCUMENTS

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

1
88.62 85.23 85.84 85.76 82.85 86.61 86.63 88.42 85.98 88.27 87.92 86.59
87.16 87.34 86.97 84.67 84.62 85.43 87.24 85.21 85.14 87.32 86.42 87.43
85.43 84.28 82.34 81.35 83.22 81.74 84.38 82.77 81.93 82.46 82.74 81.22

2
83.47 87.51 85.38 83.21 84.39 85.10 86.12 89.86 86.60 87.64 86.24 88.50
85.36 88.35 84.69 84.18 85.13 86.42 85.46 85.39 84.38 87.05 85.30 87.39
83.82 86.79 83.17 80.54 82.68 82.38 81.18 81.74 80.27 83.41 83.97 85.21

3
84.12 85.19 87.15 85.63 81.18 84.17 87.79 87.31 85.23 86.36 88.73 88.18
85.31 83.25 88.68 82.78 82.44 85.68 86.54 86.12 85.83 87.39 88.65 86.35
82.08 83.10 85.27 80.34 80.97 83.71 83.68 84.67 82.59 81.59 85.27 81.46

4
87.14 86.13 85.19 88.30 85.53 83.36 85.91 88.55 87.16 85.58 87.34 87.23
86.29 85.67 85.23 89.17 85.49 82.54 86.33 86.34 86.57 86.33 88.28 86.54
84.05 83.76 84.66 86.14 82.69 79.66 83.14 83.46 83.24 83.42 82.73 84.42

5
82.25 83.16 84.38 83.36 88.59 83.23 86.71 88.33 86.79 86.18 88.14 86.55
85.63 84.80 84.57 80.46 86.72 85.74 86.93 87.24 85.47 88.27 86.79 85.04
81.18 82.22 82.31 78.27 86.71 80.48 85.42 82.63 82.39 82.75 83.20 80.63

6
85.15 86.88 86.20 82.42 82.83 92.68 86.57 87.94 87.76 89.29 86.47 87.64
81.31 83.07 84.62 84.79 82.57 89.73 85.12 85.24 87.52 87.66 85.32 86.32
82.45 82.67 81.18 79.03 78.46 87.64 81.14 81.72 82.40 83.63 80.95 84.45

7
86.65 85.14 85.67 84.87 82.34 84.78 91.05 86.70 87.11 87.75 88.74 88.24
86.25 85.31 85.34 84.49 80.65 85.57 92.23 87.23 86.25 86.49 87.51 87.93
84.12 83.45 82.85 81.43 79.38 82.41 88.42 82.11 83.09 81.78 84.73 85.13

8
87.54 85.12 85.49 83.22 82.84 85.64 85.25 93.18 86.59 86.46 87.12 87.74
82.37 84.35 83.06 84.53 83.76 85.72 87.64 89.62 85.17 86.23 85.44 86.53
81.68 82.38 82.40 79.61 80.45 83.59 81.37 88.14 81.26 84.62 82.56 82.26

9
86.13 86.63 84.49 83.38 84.41 84.06 87.82 86.27 92.43 87.33 85.27 86.79
84.34 85.54 85.16 82.76 82.70 86.37 86.52 85.37 89.53 86.29 87.41 87.43
82.17 81.33 83.76 80.92 83.27 85.21 84.13 83.28 88.77 84.37 80.76 84.33

10
87.63 85.22 84.73 84.24 83.31 85.32 88.40 87.26 88.61 92.75 88.53 87.38
84.41 86.15 83.35 84.55 84.75 87.45 87.25 85.34 87.69 90.55 86.22 86.42
78.62 80.27 81.36 81.34 81.67 86.89 84.61 82.46 84.55 85.64 81.94 83.77

11
85.28 84.52 83.86 82.74 82.69 87.36 87.72 88.29 85.69 89.64 89.11 89.34
83.43 83.37 82.93 80.46 84.35 85.28 88.25 87.33 86.23 86.76 90.19 87.29
80.29 81.20 80.32 78.17 83.91 83.77 83.64 85.75 84.36 81.23 87.49 84.71

12
87.52 86.91 86.48 85.44 81.11 88.52 86.57 88.54 88.18 88.14 86.31 91.48
84.93 85.13 84.37 83.68 83.67 86.44 87.26 86.30 86.22 86.67 86.47 90.45
81.35 82.78 82.67 81.74 79.43 85.39 83.61 82.68 82.38 82.53 82.74 88.92

In both cases, for determining larger spaces between words
and characters, higher threshold values are required. Also,
for document images with greater character width, it is
necessary to use higher threshold values in the process of
determination of the average character width. Experiments
also showed that the threshold value used for word
segmentation could even be fixed, since it is usually clear
which spaces represent the spaces between words. In
contrast, selection of threshold value for character width is
crucial, since it is the entry point to the decision-making
algorithm. The threshold value for the maximal allowed
offset between the referent and the potential delimiter is
also important. Based on experiments, this value is usually
between 5 and 10 pixels.

IV. Conclusion

This paper presents an image
compression/decompression stage of the author’s existing

character segmentation approach, together with analysis of
the threshold parameters used in the character segmentation
stage. In Section II the image compression and
decompression methods are presented and analysis of
threshold parameters is provided. The presented methods
use the RLE data compression algorithm and document
character contour extraction for image compression, and
the scanline fill algorithm for document image
decompression. The character segmentation method is
adaptive, since it can be used for character segmentation of
the documents with different characteristics. In Section III
a set of experimental results is provided for image
compression methods and adaptability of the character
segmentation system is proved using documents from
different classes. The proposed methods perform up to 4
times better than JPEG and JPEG2000 image compression
standards. Results show that choosing the correct threshold
values leads to high segmentation accuracy for documents
of different classes. Future work will be focused on
algorithm improvement and its integration into the

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

48

complete OCR system.

Acknowledgement

This paper is supported by the Ministry of Education,
Science and Technological Development of the Republic of
Serbia (Project III44006-10), Mathematical Institute of
Serbian Academy of Science and Arts (SANU), and The
“Nikola Tesla Museum” (providing original typewritten
documents of Nikola Tesla).

REFERENCES

[1] Bourbakis, N., Pereira, N., Mertoguno, S., “Hardware

design of a letter-driven OCR and document
processing system“, Journal of Network and Computer
Applications, Vol. 19, No. 3, 1996, pp. 275-294.

[2] Mao, J., Mohiuddin, K. M., “Improving OCR
performance using character degradation models and
boosting algorithm“, Pattern Recognition Letters, Vol.
18, No. 11-13, 1997, pp. 1415-1419.

[3] Namane, A., Guessoum, A., Soubari, E. H., Meyrueis,
P., “CSM neural network for degraded printed
character optical recognition“, Journal of Visual
Communication and Image Representation, Vol. 25,
No. 5, 2014, pp. 1171-1186.

[4] Razzak, M. I., Anwar, F., Husain, S. A., Belaid, A.,
Sher, M., “HMM and fuzzy logic: A hybrid approach
for online Urdu script-based languages’ character
recognition“, Knowledge-Based Systems, Vol. 23, No.
8, 2010, pp. 914-923.

[5] Fujisawa, H., “Forty years of research in character
and document recognition-and industrial perspective“,
Pattern Recognition, Vol. 41, No. 8, 2008, pp. 2435-
2446.

[6] Lu, Y., “Machine Printed Character Segmentation -
An Overview“, Pattern Recognition, Vol. 28, No. 1,
1995, pp. 67-80.

[7] Lu, Y., Shridhar, M., “Character segmentation in
handwritten words - An overview“, Pattern
Recognition, Vol. 29, No. 1, 1996, pp. 77-96.

[8] Min-Chul, J., Yong-Chul, S., Srihari, S. N., “Machine
Printed Character Segmentation Method Using Side
Profiles“, Proceedings of IEEE SMC ’99 Conference
on Systems, Man and Cybernetics, 1999.

[9] Park, H. C., Ok, S. Y., Yu, Y. J., Cho, H. G., “A word
extraction algorithm for machine-printed documents
using a 3D neighborhood graph model“, International
Journal on Document Analysis and Recognition, Vol.
4, No. 2, 2001, pp. 115-130.

[10] Lacerda, E. B., Mello, C. A. B., “Segmentation of
connected handwritten digits using Self-Organizing
Maps“, Expert Systems with Applications, Vol. 40,
No. 15, 2013, pp. 5867-5877.

[11] Younes, M., Abdellah, Y., “Segmentation of Arabic
Handwritten Text to Lines“, Procedia Computer
Science, International Conference on Advanced
Wireless Information and Communication
Technologies (AWICT 2015), Vol. 73, 2015, pp. 115-
121.

[12] Gupta, M. R., Jacobson, N. P., Garcia, E. K., “OCR
binarization and image pre-processing for searching
historical documents“, Pattern Recognition, Vol. 40,
No. 2, 2007, pp. 389-397.

[13] Wu, M., “Genetic algorithm based on discrete wavelet
transformation for fractal image compression“,
Journal of Visual Communication and Image
Representation, Vol. 25, No. 8, 2014, pp. 1835-1841.

[14] Rufai, A. M., Anbarjafari, G., Demirel, H., “Lossy
image compression using singular value
decomposition and wavelet difference reduction“,
Digital Signal Processing, Vol. 24, 2014, pp. 117-123.

[15] Zheng, Z., Zhao, J., Guo, H., Yang, L., Yu, X., Fang,
W., “Character Segmentation System Based on C#
Design and Implementation“, Procedia Engineering,
International Workshop on Information and
Electronics Engineering, Vol. 29, 2012, pp. 4073-
4078.

[16] Grafmüller, M., Beyerer, J., “Performance
improvement of character recognition in industrial
applications using prior knowledge for more reliable
segmentation“, Expert Systems with Applications,
Vol. 40, No. 17, 2013, pp. 6955-6963.

[17] Venkateswarlu, N. B., Boyle, R. D., “New
segmentation techniques for document image
analysis“, Image and Vision Computing, Vol. 13, No.
7, 1995, pp. 573-583.

[18] Bae, J. H., Jung, K. C., Kim, J. W., Kim, H. J.,
“Segmentation of touching characters using an MLP“,
Pattern Recognition Letters, Vol. 19, No. 8, 1998, pp.
701-709.

[19] Vučković, V., Arizanović, B., “Efficient character
segmentation approach for machine-typed
documents“, Expert Systems with Applications, Vol.
80, 2017a, pp. 210-231.

[20] Vučković, V., Arizanović, B., “Automatic document
skew pre-processor for character segmentation
algorithm“, Facta Universitatis: Electronics and
Energetics, Vol. 30, No. 4, 2017b, pp. 611-625.

[21] Vučković, V., Arizanović, B., Le Blond, S., “Ultra-
fast basic geometrical transformations on linear image
data structure“, Expert Systems with Applications,
Vol. 91, 2018a, pp. 322-346.

[22] Vučković, V., Arizanović, B., Le Blond, S., “
Generalized N-way iterative scanline fill algorithm for
real-time applications“, Journal of Real-Time Image
Processing, Vol. 13, No. 4, 2018b, pp. 1-19.

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

49

