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Abstract - This paper presents an analysis of threshold 
parameters used in a new character segmentation approach for 
machine-typed documents, together with efficient new image 
compression and decompression methods used in the real time 
OCR system. Provided results show that the character 
segmentation technique is robust to machine-typed documents 
from different typewriters, giving far superior results than state-
of-the-art approaches. 
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I. INTRODUCTION

Character segmentation is a very important pre-
processing stage in Optical Character Recognition (OCR) 
systems [1,2], and together with character recognition [3,4] 
has been an important subject of research for many years 
[5]. It should be emphasized that the difficulty of character 
segmentation is usually underestimated compared to the 
process of character recognition [6,7]. Previous work that 
deals with character segmentation in document images can 
be divided into machine-printed documents [6,8,9], where 
the document structure and the shape of its elements is 
regular, and handwritten documents where character 
segmentation is challenged due to irregular document 
structure [4,7,10]. Old machine-typed documents are of 
particular significance because important historical 
documents are often in this form [4,11,12]. 

Recent research of character segmentation includes all 
levels of this process. Analyses on image binarization 
parameters, used in document image pre-processing, 
showed that the Otsu method and other Otsu-based 
methods give the best results on average [12]. As a pre-
processing stage of the character segmentation system, 
image compression and decompression are required to 
efficiently store the document images. Genetic algorithm 
based on discrete wavelet transformation information for 
fractal image compression was presented in [13]. A lossy 
image compression technique which uses singular value 
decomposition (SVD) and wavelet difference reduction 
(WDR) was proposed in [14]. Many methods for character 
segmentation have been proposed. A technique based on 
searching for connected regions in the spatial domain 
performed on a binary image was proposed in [15]. 
Another process uses the Bayes theorem for segmentation 
by exploiting prior knowledge, and is adapted for real time 
tasks [16]. Diverse methods for segmentation of 
handwritten documents are proposed. One technique 
exploits clustering in the process of segmentation [17]. To 

solve the problem of touching characters in handwritten 
documents, self-organizing maps, SVM classifiers, and 
Multi-Layer Perceptron are used [10,18]. 

This paper presents further improvements and analyses 
of the author’s character segmentation approach, which 
forms part of a real time OCR system for the needs of the 
“Nikola Tesla Museum” in Belgrade [19-22]. The first 
contribution presented in this paper is evaluating pre-
processing methods for document image compression and 
decompression, which take place after the image 
binarization, while the second contribution is a detailed 
analysis of the threshold parameters used in the character 
segmentation system. The results show that proposed 
image compression and decompression methods are better 
than JPEG and JPEG2000 image compression standards, 
giving up to 4-fold improved compression ratio. Results 
also show that the extended character segmentation 
presented is robust to variation in the typewriter, 
outperforming other methods in this respect also. 

This paper is organized as follows: Section II offers the 
complete description of the proposed image compression 
and decompression methods, as well as analysis of 
threshold parameters. In Section III, a set of experimental 
results for image compression methods and segmentation 
accuracy are provided. Finally, discussion of the extended 
real time character segmentation method, results, and 
future work is given in Section IV. 

II. Extended character segmentation approach

This section proposes new image compression and 
decompression methods used in the pre-processing stage of 
the character segmentation system and provides detailed 
analyses of threshold parameters used in the segmentation 
stage to control the segmentation process. 

A. Image compression and decompression

Image compression/decompression allows decoupling
of the character segmentation system into two independent 
stages. The first is a pre-processing stage with the 
document image compression and decompression as a final 
process, and the second is the document image 
segmentation. The most evident gain here is the ability to 
execute two independent system parts at different times. In 
this way, the document image compression and document 
image segmentation can be executed on different machines. 
Also, the previously compressed/decompressed document 
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images can be processed using different versions of the 
segmentation engine. This is very important since it allows 
efficient testing of the segmentation engine. Finally, image 
compression allows efficient storing of document images 
which can save significant memory space. 

A.I Image compression and decompression using RLE

The first proposed image compression and
decompression methods employ the RLE algorithm for 
data compression. This approach is general and can be used 
for all types of binarized images, but RLE algorithm gives 
better compression results in the case of document images 
than other classes e.g. natural images. Illustration of the 
RLE algorithm including the coding format is given in Fig. 
1. 

Fig. 1.  Document image compression using RLE algorithm: (a) 
Compression format for white pixel runs, (b) Compression format 

for black pixel runs, (c) Example of pixel scanline, (d) 
Compressed pixel scanline 

The RLE algorithm counts white and black pixels and 
stores the information about pixel runs in a compressed 
file. Storing is achieved using 3 bytes for all information 
about the white pixels and 2 bytes for information about the 
black pixels. In both cases the pixels are counted until the 
maximal value is reached. Since 2 bytes are used for white 
pixels (WHITE_RUN), this value is 216 = 65536, while in 
case of black pixels (BLACK_RUN) this value is 28 = 256. 
When these values are reached, the WHITE_LOOPS or 
BLACK_LOOPS byte is incremented and WHITE_RUN 
and BLACK_RUN values are set to 0. The whole process 
of counting is then repeated. Since white pixels are a part 
of the background and dominate in document images, it is 
expected that 1 byte is not enough for storing the 
information about the number of consecutive white pixels. 
On the other hand, black pixel runs are expected to be short 
since they represent document characters and some spaces 
between characters are expected, thus only 1 byte is used 
for storing this information. Document image 
decompression is straightforward. The first byte is always 
multiplied by 256 for black pixels or 65536 for white 
pixels. This value is then incremented by the value of the 
next byte or 2 bytes. The obtained value represents the 
number of consecutive pixels of the same color in the 

current run of pixels. This process is repeated until the end 
of the compressed file. 
A.II Image compression and decompression using
document character contour extraction and scanline fill
algorithm

The second proposed method employs the combination 
of the algorithm based on document character contour 
extraction and the scanline fill algorithm. The document 
image is processed in the horizontal and vertical direction 
and distances between the black pixels which represent 
starting and ending pixels of the black runs are stored in the 
compressed file. For this purpose, 2 bytes can be used to 
store the distance between two black pixels. It should be 
mentioned that in both compression methods the number of 
bytes used for storing the information about the white and 
black pixel runs is dependent primarily on the image 
dimensions. Small images are expected to have short runs, 
while large images are expected to have long runs of pixels 
of the same color. Therefore, 1 byte can be used for both 
white and black pixels in the case of small images, while in 
case of large images 2 bytes are necessary. Another 
important factor is a structure of a document image. If 
textual content dominates in a document image, 
background areas are less significant and thus even with 
large images, 1 byte can be used for storing the information 
about pixel runs. On the other side, if the background area 
dominates, even with medium images, 2 bytes are not 
enough to store the information about pixel runs. 

After obtaining the offsets of black pixels which 
represent the contours of the characters, in the first step of 
the decompression method contours are drawn to the output 
image. The second step uses the iterative scanline fill 
algorithm. The main idea here is to scan the whole output 
image and fill the contours which represent the background 
with background color, while character contours will be 
filled with black color. This is achieved by repeating 
execution of the scanline fill algorithm. The background 
color of a document image is then replaced with white 
color and the original binarized document image is 
obtained. 

B. Analyses of threshold parameters

This subsection provides detailed analyses of threshold
parameters used in the character segmentation system. 
Analyses of document image binarization and line, word, 
and character segmentation are taken into consideration. 

B.I Binarization

The binary image is obtained using a thresholding
function T which is a gray-level transformation function of 
the form: 

00000000 0000000000000001 00000000 00000101 00000000 
0000000000000100 00000000 00000011 

a) 

b) 

c) 

d)
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In the concrete case, value rmax is equal to 255. The 
threshold value Thb that gives the best results is influenced 
primarily by the quality of the document image. If the 
document image is of low quality, a higher threshold value 
is required. Experimental results showed that in case of 
machine-typed documents the best results are achieved 
when Thb takes values in the range 160-190. This threshold 
parameter affects line and word segmentation in some 
aspects, but character segmentation the most, since the 
spaces between the characters are small and the modified 
projection profiles technique can fail to separate the words 
into characters properly. In the case of images of high 
quality, Thb can take values closer to 160, while in case of 
images of low quality this value must be closer to 190. The 
graphs which show a dependency of segmentation accuracy 
from the binarization threshold parameter Thb are shown in 
Fig. 2. 

Fig. 2.  Dependency of the segmentation accuracy from the 
binarization threshold parameter 

The character segmentation system is intended for 
processing of document classes which contain documents 
typed on the same typewriter. Although it does not 
guarantee that documents which belong to the same class 
will be of the same quality, this is nevertheless likely. This 
means that a constant value for binarization threshold 
parameter can be used for different documents classes. 

B.II Segmentation logic

Segmentation logic is based on a modified projection
profiles technique, which uses histogram processing. A 
sliding window is used for calculation of the concentration 
of black pixels in the area of interest. Document line 
segmentation exploits the sliding window based method 
with vertical sliding. Suppose that the sliding window is 
size of N x H, where N is the width of the binary image f 
and H is the height of the sliding window. The 
concentration of black pixels in the sliding window is 
calculated as: 

 

Values sn represent the values in the array of all sliding 
window concentrations of black pixels, S. The next 

condition is used for making a decision about which offsets 
will be taken as potential delimiters between lines: 

 

where dx represents the offset relative to the top of the 
image and H/2  represents integer division. Values dx 
represent offsets of the middle lines of the windows which 
slide vertically along the area of interest. Only the offsets 
which belong to the sliding window with the concentration 
of black pixels lower than the chosen threshold value are 
considered. Using the offset analysis and considering the 
fact that the document line height is greater than d pixels, 
the closest offsets on distance greater than d are taken. 
Value H is the height of the sliding window which slides 
from top to bottom of the image. In general, the goal is to 
find local minima which represent spaces between the 
document lines. If value greater than 1 is chosen, it will 
lead to worse results, since multiple pixel scanlines are 
considered. In that case, the bigger value for threshold 
parameter Thswl is necessary due to higher average 
concentration of black pixels in the sliding window. This 
would lead to unpredictable behavior and would be 
impossible to separate document lines that are very close to 
each other. Therefore, the sliding window height equal to 1 
is the best choice and makes the process of document line 
segmentation easier to control. The value of the threshold 
parameter Thswl depends on the document image structure 
and document image quality. The best choice is the 
smallest possible value which will separate correctly and 
completely the document image in lines. Even if this is 
achieved, it is possible and expected that other separators 
which cut the document lines will be found, too. For this 
reason, the previously mentioned value d is used to 
eliminate the wrong separators. This value is constant for 
documents inside the same document class and 
approximately equal to the document image character 
height. 

The word segmentation process uses the sliding 
window based method with horizontal sliding. Suppose that 
a sliding window size of W x H is taken, where W is the 
width of the sliding window and H = Lcl – Lcu represents 
the height of the current line. The concentration of black 
pixels in the sliding window is calculated as: 

 

where Lcl is the offset of the lower border and Lcu is the 
offset of the upper border of the given document line. The 
histogram is computed for each document line using the 
values hn. The essence of the histogram analysis is in 
determination of the histogram valleys which represent the 
minima of the concentration of black pixels in the given 
line. The local minima less than the chosen threshold value 
are taken and these values represent delimiters between the 
words. Taking the word segmentation into consideration, 
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the sliding window width W and the threshold value Thsww 
should be analyzed. Since the sliding window height is 
fixed and determined by the previously obtained document 
line height, the sliding window width controls the width of 
the spaces that are searched inside the document line. The 
value used for sliding window width ideally should be 
around the average width of spaces between the words. An 
alternative solution is to choose the value higher than 
average space between the characters inside the word. This 
will raise the possibility that only the spaces between the 
words are detected. This value also depends on document 
image structure, quality, and dimensions. The threshold 
parameter Thsww has a role to eliminate the potentially 
wrongly detected spaces between the characters. Choosing 
the low value for Thsww will ensure only the spaces between 
the words are detected, thus the latter choice is more 
suitable. The graph in Fig. 3 shows the dependency of the 
word segmentation accuracy from the sliding window 
width. 

Fig. 3.  Dependency of the word segmentation accuracy from the 
sliding window width 

The approach used for character segmentation consists 
of the word alignment process, the already described 
histogram based method, and decision-making logic. The 
word alignment process represents the correction of 
dislocated words that appear due to the use of old typing 
machines. Sliding window height is again equal to the 
previously obtained document line height, while sliding 
window width depends on various factors. In case that a 
document image is of good quality, it is possible to perform 
quality image filtering and remove undesirable noise. But, 
in case of document images of low quality, even the best 
possible choice of the value for the binarization threshold 
parameter would not be helpful. The reason for this lies in 
sensitivity of the projection profiles technique used in the 
first part of the character segmentation process. Document 
images of low quality will have missing pixels in some part 
of the word and this area will be detected as a space 
between the characters. Also, the additional pixels in the 
areas which represent spaces between the characters will 
prevent the algorithm to detect them as spaces. A sliding 
window of generally smaller width than that used for word 
segmentation should be chosen for the first part of 
character segmentation. The value for sliding window 
width should approximately correspond to the average 
space between the characters. It depends primarily on 
document image dimensions. The threshold value Thswc 

used to choose the potential delimiters within a word 
should be low enough to avoid detecting the wrong 
delimiters, and is strongly dependent on document image 
structure, quality, and dimensions. 

The second part of the character segmentation is more 
specific and represents a decision-making logic. After 
determination of the local minima, which represent 
potential delimiters between characters, the threshold value 
for document character width Thcw is used for determining 
the word length. The average character width is calculated 
as follows: 

 

 

where Cn is the assumed number of characters in a word 
calculated using the threshold value Thcw, Ww is the width 
of the given word in pixels, and Cwavg represents the 
average character width used in further processing. The 
word length is used to determine the number of delimiters 
in a word. Afterwards, the average character width can be 
calculated using the assumed word length, which is 
calculated using the threshold value Thcw. The threshold 
value Thcw is dependent on document image dimensions. 
This value ideally should be equal to the average character 
width, but even the slightly lower or higher value would be 
suitable. This deviation also depends on document image 
dimensions. The larger document images allow the bigger 
deviation and smaller document images allow smaller 
deviation values. 

The segmentation of the given word starts from the left 
border, and delimiters at distance equal to the determined 
average character width are taken as the referent delimiters. 
The crucial part in character segmentation is the choice of 
the correct delimiter from the potential delimiters. The 
algorithm goal is to find the potential delimiter that is 
closest to the referent delimiter, where the maximal 
distance between the referent and potential delimiter is 
defined by the maximal offset allowed. In the case where 
there are no potential delimiters within the allowed 
distance, the referent delimiter will be chosen to be the real 
delimiter and the next referent delimiter will be set on a 
distance equal to the average character width from the 
chosen delimiter. Suppose that d1, d2,…,dn is the sequence 
of potential delimiter offsets, where each of them is 
calculated as: 

 

where hv represents the given histogram valley and W is 
the width of the sliding window. The offset of the chosen 
delimiter is determined as follows: 
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where j is the index of the chosen delimiter in the set of all 
potential delimiters, dref is the referent delimiter, and Thoffset 
is the threshold value for the maximal allowed distance 
between the closest potential delimiter and the referent 
delimiter. The threshold value Thoffset also primarily 
depends on document image dimensions. This value 
represents a deviation from the assumed delimiter position 
dref. In any case, this deviation is smaller than determined 
average character width Cwavg. 

IV. Experiments

The proposed image compression and decompression 
methods, as a part of a character segmentation system, are 
tested on several PC machines. These methods are 
evaluated from the perspective of the image compression 
ratio and time complexity, to the perspective of the 
segmentation accuracy when specific compression methods 
are used. The second batch of experiments show the 

adaptability of the character segmentation approach for 
different classes of machine-typed documents. Documents 
typed on different typewriters require different threshold 
values, and by choosing the correct values for the 
thresholds, it is possible to achieve the high segmentation 
accuracy for all classes of documents. In order to obtain 
comparative results, JPEG and JPEG2000 image 
compression standards are used. Image compression using 
JPEG and JPEG2000 is performed using low, medium, and 
high quality compression, including lossless compression 
in the case of JPEG2000 compression. 

The most important metric for evaluating the 
compression methods is compression ratio. Since the 
proposed image compression and decompression methods 
will be used in character segmentation system, their 
performances specifically on document images should be 
analyzed. To perform this analysis, image compression 
methods are tested using two document images. These 
document images are machine-printed documents since the 
second method is limited to machine-printed documents 
which have regular structure, thus character contour 
extraction is easier. Compression ratio results for these 
document images and different image compression 
methods are shown in Table I. 

TABLE I 

COMPARISON OF THE IMAGE COMPRESSION RATIO FOR MACHINE-PRINTED DOCUMENT IMAGES FOR DIFFERENT IMAGE COMPRESSION METHODS 

Image 
Dimensions 

Image 
File 
Size 
(KB) 

Compression Ratio 

JPEG JPEG2000 
RLE Contour 

Extraction/Scanline Fill 
Low Medium High Low Medium High Lossless 

719x328 692 19.771 15.727 9.479 24.714 16.878 11.533 14.417 67.184 46.443 

1266x924 3429 14.169 9.605 5.164 36.095 13.138 6.671 9.741 27.878 19.373 

The proposed methods perform very well on document 
images based on results from Table I. This conclusion is 
expected since the presented algorithms perform better 
when the image contains huge areas of the same color, as in 
the case of document images. The RLE based method gives 
the best results, while the contour extraction method gives 

the second best results on average. To justify the usage of 
the second image compression method, the segmentation 
results for document images previously compressed and 
decompressed using different methods are given in Table 
II. 

TABLE II 

COMPARISON OF THE SEGMENTATION ACCURACY RESULTS FOR DIFFERENT IMAGE COMPRESSION METHODS USED IN THE PRE-PROCESSING 
STAGE

Segmentation Accuracy (%) 

JPEG JPEG2000 RLE Contour Extraction/Scanline Fill 

Line Segmentation 81.54 81.54 81.54 80.32 

Word Segmentation 78.28 78.28 78.28 78.14 

Character Segmentation 87.08 87.08 87.08 86.92 
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The medium or high quality JPEG and JPEG2000 
compression is shown since it behaves the same way as 
lossless compression after the additional binarization. 
Therefore, the results for JPEG, JPEG2000, and RLE based 
compression are identical. The most important conclusion 
here is that contour extraction based compression in 
combination with scanline fill decompression gives slightly 
worse results than previous compression methods. The 
reason for this lies in sensitivity of the evaluation metrics 
and also in the specificity of the character segmentation 
technique. In general, this technique is not sensitive to 

small changes in document image structure and therefore 
the segmentation accuracy results are similar to those 
obtained using the lossless compression methods. 

Finally, a very important aspect of the image 
compression methods is time complexity since they are 
intended for a real time character segmentation system. In 
order to provide reliable results, the proposed image 
compression and decompression methods are tested on 
several PC machines and results are shown in Tables IV 
and V. 

TABLE IV 

PROCESSING TIME FOR RLE BASED COMPRESSION AND DECOMPRESSION METHOD (AMD ATHLON™ X4 840 QUAD CORE PROCESSOR 3.1 
GHZ) 

Image dimensions 
(pixels) 

White Pixels/Black 
Pixels (%) 

Processing Time (ms) 

RLE Compression RLE Decompression 

719x328 93.09:6.91 0.26639 0.30149 0.23231 0.27278 

1266x924 83.51:16.49 2.04907 2.59600 1.94450 3.05122 

2632x3575 98.06:1.94 10.61898 15.07239 13.35769 21.82402 

2640x3612 98.69:1.31 10.79404 16.99354 13.31302 21.95595 

TABLE V 

PROCESSING TIME FOR CONTOUR EXTRACTION BASED COMPRESSION METHOD AND SCANLINE FILL DECOMPRESSION METHOD (DOCUMENT 
IMAGE SIZE OF 719X328) 

PC Machine Specification 
Processing Time (ms) 

Contour Compression Scanline Fill Decompression 

AMD Athlon™ X4 840 Quad 
Core Processor 3.1 GHz 0.26672 0.29824 1.59406 2.06575 

Intel® Core™ i3-4150 CPU @ 
3.50GHz 0.50409 0.52009 1.16008 1.18575 

Intel® Core™ i5-750 CPU @ 
2.67GHz 1.05348 1.06509 1.94235 1.95962 

Time complexity results are obtained after 10000 
executions of algorithms implementations. The first 
method also achieves excellent results in the case of 
document images with more black pixels which is a 
characteristic of documents with greater textual content. 
The second method processing time is primarily affected 
by the number of closed contours which represent character 
borders and must be filled using the scanline fill algorithm. 
Each time the closed contour must be filled, the scanline 
fill algorithm for region filling must be executed. Since the 
document image used for obtaining the results in Table V 
has huge areas of the same color and a small number of 
characters, the second method proved to be very efficient. 

The second part of the experimental section is focused 

on the adaptability of the character segmentation system. In 
order to evidence this property, documents are divided into 
12 classes, where each class represents a set of documents 
typed on the same typewriter. Therefore, 12 combinations 
of threshold values that give the best results for 
corresponding classes are chosen, and segmentation 
accuracy results when these combinations are used for 
processing are provided. The results for all levels of 
segmentation are shown in Table VI. Results rarely go 
below 80%. Text line segmentation results are above 90% 
in cases when spaces between document lines are bigger 
and when it is easy to determine the position of the lines. It 
is expected that text line segmentation results are good for 
all document classes, where spaces between lines are clear, 
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otherwise threshold values should be chosen carefully. 
Another important feature are threshold values for word 

segmentation and the determination of the average 
character width.

TABLE VI 

SEGMENTATION RESULTS FOR CHARACTER SEGMENTATION APPROACH FOR DIFFERENT CLASSES OF MACHINE-TYPED DOCUMENTS 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

1 
88.62 85.23 85.84 85.76 82.85 86.61 86.63 88.42 85.98 88.27 87.92 86.59 
87.16 87.34 86.97 84.67 84.62 85.43 87.24 85.21 85.14 87.32 86.42 87.43 
85.43 84.28 82.34 81.35 83.22 81.74 84.38 82.77 81.93 82.46 82.74 81.22 

2 
83.47 87.51 85.38 83.21 84.39 85.10 86.12 89.86 86.60 87.64 86.24 88.50 
85.36 88.35 84.69 84.18 85.13 86.42 85.46 85.39 84.38 87.05 85.30 87.39 
83.82 86.79 83.17 80.54 82.68 82.38 81.18 81.74 80.27 83.41 83.97 85.21 

3 
84.12 85.19 87.15 85.63 81.18 84.17 87.79 87.31 85.23 86.36 88.73 88.18 
85.31 83.25 88.68 82.78 82.44 85.68 86.54 86.12 85.83 87.39 88.65 86.35 
82.08 83.10 85.27 80.34 80.97 83.71 83.68 84.67 82.59 81.59 85.27 81.46 

4 
87.14 86.13 85.19 88.30 85.53 83.36 85.91 88.55 87.16 85.58 87.34 87.23 
86.29 85.67 85.23 89.17 85.49 82.54 86.33 86.34 86.57 86.33 88.28 86.54 
84.05 83.76 84.66 86.14 82.69 79.66 83.14 83.46 83.24 83.42 82.73 84.42 

5 
82.25 83.16 84.38 83.36 88.59 83.23 86.71 88.33 86.79 86.18 88.14 86.55 
85.63 84.80 84.57 80.46 86.72 85.74 86.93 87.24 85.47 88.27 86.79 85.04 
81.18 82.22 82.31 78.27 86.71 80.48 85.42 82.63 82.39 82.75 83.20 80.63 

6 
85.15 86.88 86.20 82.42 82.83 92.68 86.57 87.94 87.76 89.29 86.47 87.64 
81.31 83.07 84.62 84.79 82.57 89.73 85.12 85.24 87.52 87.66 85.32 86.32 
82.45 82.67 81.18 79.03 78.46 87.64 81.14 81.72 82.40 83.63 80.95 84.45 

7 
86.65 85.14 85.67 84.87 82.34 84.78 91.05 86.70 87.11 87.75 88.74 88.24 
86.25 85.31 85.34 84.49 80.65 85.57 92.23 87.23 86.25 86.49 87.51 87.93 
84.12 83.45 82.85 81.43 79.38 82.41 88.42 82.11 83.09 81.78 84.73 85.13 

8 
87.54 85.12 85.49 83.22 82.84 85.64 85.25 93.18 86.59 86.46 87.12 87.74 
82.37 84.35 83.06 84.53 83.76 85.72 87.64 89.62 85.17 86.23 85.44 86.53 
81.68 82.38 82.40 79.61 80.45 83.59 81.37 88.14 81.26 84.62 82.56 82.26 

9 
86.13 86.63 84.49 83.38 84.41 84.06 87.82 86.27 92.43 87.33 85.27 86.79 
84.34 85.54 85.16 82.76 82.70 86.37 86.52 85.37 89.53 86.29 87.41 87.43 
82.17 81.33 83.76 80.92 83.27 85.21 84.13 83.28 88.77 84.37 80.76 84.33 

10 
87.63 85.22 84.73 84.24 83.31 85.32 88.40 87.26 88.61 92.75 88.53 87.38 
84.41 86.15 83.35 84.55 84.75 87.45 87.25 85.34 87.69 90.55 86.22 86.42 
78.62 80.27 81.36 81.34 81.67 86.89 84.61 82.46 84.55 85.64 81.94 83.77 

11 
85.28 84.52 83.86 82.74 82.69 87.36 87.72 88.29 85.69 89.64 89.11 89.34 
83.43 83.37 82.93 80.46 84.35 85.28 88.25 87.33 86.23 86.76 90.19 87.29 
80.29 81.20 80.32 78.17 83.91 83.77 83.64 85.75 84.36 81.23 87.49 84.71 

12 
87.52 86.91 86.48 85.44 81.11 88.52 86.57 88.54 88.18 88.14 86.31 91.48 
84.93 85.13 84.37 83.68 83.67 86.44 87.26 86.30 86.22 86.67 86.47 90.45 
81.35 82.78 82.67 81.74 79.43 85.39 83.61 82.68 82.38 82.53 82.74 88.92 

In both cases, for determining larger spaces between words 
and characters, higher threshold values are required. Also, 
for document images with greater character width, it is 
necessary to use higher threshold values in the process of 
determination of the average character width. Experiments 
also showed that the threshold value used for word 
segmentation could even be fixed, since it is usually clear 
which spaces represent the spaces between words. In 
contrast, selection of threshold value for character width is 
crucial, since it is the entry point to the decision-making 
algorithm. The threshold value for the maximal allowed 
offset between the referent and the potential delimiter is 
also important. Based on experiments, this value is usually 
between 5 and 10 pixels. 
 

IV. Conclusion 
 

This paper presents an image 
compression/decompression stage of the author’s existing 

character segmentation approach, together with analysis of 
the threshold parameters used in the character segmentation 
stage. In Section II the image compression and 
decompression methods are presented and analysis of 
threshold parameters is provided. The presented methods 
use the RLE data compression algorithm and document 
character contour extraction for image compression, and 
the scanline fill algorithm for document image 
decompression. The character segmentation method is 
adaptive, since it can be used for character segmentation of 
the documents with different characteristics. In Section III 
a set of experimental results is provided for image 
compression methods and adaptability of the character 
segmentation system is proved using documents from 
different classes. The proposed methods perform up to 4 
times better than JPEG and JPEG2000 image compression 
standards. Results show that choosing the correct threshold 
values leads to high segmentation accuracy for documents 
of different classes. Future work will be focused on 
algorithm improvement and its integration into the 
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complete OCR system. 
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